
Message passing for quantified Boolean formulas

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

J. Stat. Mech. (2012) P05025

(http://iopscience.iop.org/1742-5468/2012/05/P05025)

Download details:

IP Address: 193.54.80.203

The article was downloaded on 31/05/2012 at 09:22

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-5468/2012/05
http://iopscience.iop.org/1742-5468
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J.S
tat.M

ech.
(2012)

P
05025

ournal of Statistical Mechanics:J Theory and Experiment

Message passing for quantified Boolean
formulas

Pan Zhang1, Abolfazl Ramezanpour1, Lenka Zdeborová2

and Riccardo Zecchina1

1 Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy
2 Institut de Physique Theorique, IPhT, CEA Saclay, and URA 2306, CNRS,
91191 Gif-sur-Yvette, France
E-mail: july.lzu@gmail.com, abolfazl.ramezanpour@polito.it,
lenka.zdeborova@gmail.com and riccardo.zecchina@polito.it

Received 20 April 2012
Accepted 9 May 2012
Published 31 May 2012

Online at stacks.iop.org/JSTAT/2012/P05025
doi:10.1088/1742-5468/2012/05/P05025

Abstract. We introduce two types of message passing algorithms for quantified
Boolean formulas (QBF). The first type is a message passing based heuristics that
can prove unsatisfiability of the QBF by assigning the universal variables in such
a way that the remaining formula is unsatisfiable. In the second type, we use
message passing to guide branching heuristics of a Davis–Putnam–Logemann–
Loveland (DPLL) complete solver. Numerical experiments show that on random
QBFs our branching heuristics give robust exponential efficiency gain with respect
to state-of-the-art solvers. We also manage to solve some previously unsolved
benchmarks from the QBFLIB library. Apart from this, our study sheds light on
using message passing in small systems and as subroutines in complete solvers.

Keywords: analysis of algorithms, heuristics, message-passing algorithms,
typical-case computational complexity

c©2012 IOP Publishing Ltd and SISSA Medialab srl 1742-5468/12/P05025+13$33.00

mailto:july.lzu@gmail.com
mailto:abolfazl.ramezanpour@polito.it
mailto:lenka.zdeborova@gmail.com
mailto:riccardo.zecchina@polito.it
http://stacks.iop.org/JSTAT/2012/P05025
http://dx.doi.org/10.1088/1742-5468/2012/05/P05025

J.S
tat.M

ech.
(2012)

P
05025

Message passing for quantified Boolean formulas

Contents

1. Introduction 2

2. Definitions and formulas 3

3. Heuristic algorithm for proving unsatisfiability 4

4. Message passing to guide QBF complete solvers 6

5. Performance of BPH on structured formulas 11

6. Conclusion and discussion 12

Acknowledgments 13

References 13

1. Introduction

Satisfiability of quantified Boolean formulas (QBF) is a generalization of the Boolean
satisfiability problem (SAT) where universal quantifiers are added to the existential
ones. QBF are useful in modeling practical problems harder than NP (set of decision
problems that can be verified in polynomial time by a non-deterministic Turing machine),
e.g. planning, verification or combinatorial game playing. Algorithmic complexity of QBF
ranges in the polynomial hierarchy up to PSPACE (set of decision problems that can be
solved by a Turing machine using a polynomial amount of space).

Message passing algorithms are used in a wide range of algorithmically hard problems,
from constraint satisfaction problems such as the satisfiability problem [1] to gene
regulation network reconstruction [2], error correcting codes [3], or compressed sensing [4].
Message passing algorithms can be very efficient for large random systems where complete
algorithms cannot be applied. However, on small systems sizes or for structured SAT
problems the use of message passing has been so far very limited. For instance there
have been attempts to solve small satisfiability problems by using message passing in a
complete algorithm [5]. However, according to these result it seems that message passing
is helpful only for satisfiable random formulas, where complete algorithms are less efficient
than stochastic local search algorithms.

In this paper we introduce two types of message passing algorithms for quantified
Boolean formulas, one as a heuristic scheme and another as a subroutine for a complete
solver. We mainly consider QBF with two alternations ∀X∃Y Φ with X corresponding to
the set of universal variables, Y corresponding to the set of existential variables, and Φ
being a CNF formula. Such QBF are said to be satisfiable if for all configurations of the
universal variables, there exists an assignment of the existential variables that satisfies
the formula. Examples for the case with more alternations are presented in section 3.

Solving a QBF is in general more difficult than solving a SAT formula. In the case
of random SAT formulas, the state-of-art SAT solvers e.g. kcnfs [6] or march [7] can solve
hard satisfiable 3-SAT instances with 600 variables, while the state-of-art QBF solvers,
e.g. QuBE7.2 [8], can solve hard random QBF with number of variables only up to 60. The

doi:10.1088/1742-5468/2012/05/P05025 2

http://dx.doi.org/10.1088/1742-5468/2012/05/P05025

J.S
tat.M

ech.
(2012)

P
05025

Message passing for quantified Boolean formulas

intuitive reason for this difference is that a much larger search space needs to be explored
in QBF. Another reason is that, whereas for SAT formulas there are several good decision
heuristics based on e.g. look-ahead [9] or backbone-search [10], for QBF efficient decision
heuristics are missing. Here we introduce belief propagation based decision heuristics
that provide considerable speed up to the state of the art QBF solvers. A similar attempt
has been done in [11] where, however, the use of survey propagation instead of belief
propagation was unfortunate as we discuss briefly later.

For the SAT problem, besides complete algorithms based on Davis–Putnam–
Logemann–Loveland (DPLL), see e.g. chapters 2, 3, and 4 of [12], or resolution, there
are also many efficient heuristic algorithms, see e.g. chapter 4 of [12]. However, to the
best of our knowledge, all algorithms proposed for QBF were complete except one [13].
Here we introduce a new message passing based heuristics for proving unsatisfiability that
improves on the algorithm of [13].

2. Definitions and formulas

In this section we remind ourselves of the definition of random QBF that we use as
benchmarks for our algorithms [14, 15]. We also remember the standard formulas for
belief propagation and survey propagation update rules [1, 16, 17].

To express QBF with t alternations, we use Q1V1Q2V2 · · ·QtVtΦ where Qn denotes
quantifier ∃ or ∀ at nth alternation, Vn denotes the set of variables at nth alternation and
Φ denotes the set of clauses. We evaluate satisfiability of QBF in the following way. If one
is able to find an assignment of the universal variables for which no solution exists, the
QBF is said to be unsatisfiable, otherwise it is satisfiable. For instance, ∀X∃Y Φ denotes
QBF with two alternations, and the set of universal X and existential Y variables. This
formula is satisfiable if for every assignment of X, one can find an assignment for Y such
that Φ is satisfied. We will use the notation Nu ≡ |X|, Ne ≡ |Y |, M for the number of
clauses in Φ, αe ≡M/Ne and αu ≡M/Nu.

Several models for random QBF were proposed. In this paper, we consider the (L,K)
model [15] and the model-B [14]. In model-B, each clause in Φ has U universal variables
and V > 0 existential variables that are selected randomly from the whole set of universal
(respectively existential) variables. The (L,K) model is a special case of model-B formula
with two alternations, which specifies a formula ∀X∃Y Φ where each clause in Φ contains
L+K variables, L from X and K from Y .

In message passing algorithms, belief propagation (BP) [16] and survey propagation
(SP) [1], we define {ψs

i } to be the marginal probability that variable i takes assignment
s among all the solutions (BP) or among all the solution clusters (SP). In BP s has two
possible values + or −, with ψ+

i + ψ−
i = 1, in SP s has three possible values +, ∗ and

− with ψ+
i + ψ∗

i + ψ−
i = 1. We say that a variable is biased if ψ+

i �= ψ−
i , the larger the

difference the larger bias the variable has. If ψ+
i > ψ−

i we define the bias of i to be ψ+
i ,

and if ψ+
i < ψ−

i we define the bias of i to be ψ−
i .

Let us define ∂+i as the set of clauses to which i belongs non-negated, and ∂−i be
the set of clauses to which i belongs negated. Then the set of clauses to which variable
i belongs can be written as ∂i = {a} ∪ Sia ∪ Uia where: (a) if i is not negated in a then
Sia = ∂+i \ a, Uia = ∂−i and (b) if i is negated in a then Sia = ∂−i \ a, Uia = ∂+i.

doi:10.1088/1742-5468/2012/05/P05025 3

http://dx.doi.org/10.1088/1742-5468/2012/05/P05025

J.S
tat.M

ech.
(2012)

P
05025

Message passing for quantified Boolean formulas

The BP marginals are computed as

ψ+
i =

∏
b∈∂−i ub→i

∏
b∈∂+i(1 − ub→i)

∏
b∈∂+i ub→i

∏
b∈∂−i(1 − ub→i) +

∏
b∈∂−i ub→i

∏
b∈∂+i(1 − ub→i)

, (1)

where messages ub→i are a fixed point of the following iterative equations

ψi→a =

∏
b∈Sia

ub→i

∏
b∈Uia

(1 − ub→i)
∏

b∈Sia
ub→i

∏
b∈Uia

(1 − ub→i) +
∏

b∈Uia
ub→i

∏
b∈Sia

(1 − ub→i)
,

ub→i =
1 − ∏

j∈∂b\i ψj→b

2 − ∏
j∈∂b\i ψj→b

.

(2)

Iteration equations of SP are written as:

ψU
i→a =

1

Ci→a

[

1 −
∏

b∈Uia

ub→i

]
∏

b∈Sia

ub→i,

ψS
i→a =

1

Ci→a

[

1 −
∏

b∈Sia

ub→i

]
∏

b∈Uia

ub→i,

ψ∗
i→a =

1

Ci→a

∏

b∈∂i\a
ub→i,

ua→i = 1 −
∏

j∈∂a\i
ψU

j→a,

(3)

where ψU
i→a (ψS

i→a) denotes ψ+
i→a (ψ−

i→a) if i is negated in a and ψ−
i→a (ψ+

i→a) if i is not
negated in a. Ci→a is a normalization constant ensuring ψ+

i→a + ψ∗
i→a + ψ−

i→a = 1. SP
marginals are computed by

ψ+
i =

1

Ci

⎡

⎣1 −
∏

b∈∂+i

ub→i

⎤

⎦
∏

b∈∂−i

ub→i,

ψ−
i =

1

Ci

⎡

⎣1 −
∏

b∈∂−i

ub→i

⎤

⎦
∏

b∈∂+i

ub→i,

ψ∗
i =

1

Ci

∏

b∈∂i

ub→i,

(4)

where Ci is again a normalization constant.

3. Heuristic algorithm for proving unsatisfiability

Proving unsatisfiability for the two-level QBF can be done by finding an assignment of
the universal variables that leaves the existential part of the formula unsatisfiable. One
strategy is to find a configuration of the universal variables that leaves the largest possible
number of clauses unsatisfied; see e.g. WalkMinQBF [13]. This, however, leads to heuristic
algorithms that do not use in any way the existential part of the QBF. Here we suggest and

doi:10.1088/1742-5468/2012/05/P05025 4

http://dx.doi.org/10.1088/1742-5468/2012/05/P05025

J.S
tat.M

ech.
(2012)

P
05025

Message passing for quantified Boolean formulas

Figure 1. Ratio of unsatisfiable formulas found by the various algorithms
discussed in the text for random (1, 2) QBF instances with Nu = Ne = 200
(left) and (1, 3) QBF instances with Nu = Ne = 50 (right) as a function of
αe = M/Ne, Data are averaged over 1000 instances.

test a belief propagation decimation heuristics for proving unsatisfiability that takes into
account the whole formula and outperforms significantly the previously known heuristics.

Our belief propagation decimation heuristics (BPDU) for proving unsatisfiability
of QBF works as follows: input is the QBF formula ∀X∃Y Φ. We disregard for a
moment the quantifiers in the QBF formula and run randomly initialized BP on the whole
formula (i.e. with both universal and existential variables) until convergence or until the
maximum number of allowed iterations tmax is achieved (typically we use tmax = 300 in our
algorithms). We select the most biased universal variable and fix it against the direction
of the bias. We repeat the above steps until all the universal variables are assigned. Then
we run a complete SAT solver (in our case kcnfs [6, 10]) on the formula consisting of the
existential variables and clauses that were not satisfied by any of the universal variables.
If this remaining formula is unsatisfiable then we have proved unsatisfiability of the QBF.
If the remaining formula is satisfiable then the algorithm outputs ‘unknown’, since there
might be another configuration of the universal variables that would leave the remaining
formula unsatisfiable.

A variation on the above heuristic algorithm is to run survey propagation instead of
belief propagation whenever survey propagation converges to a nontrivial fixed point. In
what follows we call this variation BPSPDU.

To evaluate the performance of the BPDU and BPSPDU heuristics we first apply them
on random (1, 2) and (1, 3) (which stand for (L,K) instances) QBF instances with vary-
ing numbers of clauses (more clauses make the formulas less likely to be satisfiable), see
figure 1. For both cases, a complete solver (e.g. QuBe7) can solve every formula hence we
can compare the fraction of unsatisfiable formulas found by heuristics to the true fraction.
We also show the fraction of unsatisfiable formulas found by the ‘greedy’ strategy, which
fixes the universal variables in order to allow the largest possible number of unsatisfied
clauses. In the case of (1, K) QBF this is easy as every universal variable just needs to be
set positive if it appears negated in more clauses than non-negated, and vice versa. In fig-
ure 1 we see that the BPDU and BPSPDU heuristics perform much better than the greedy
strategy, and in the case of (1, 2) QBF the performance is not too far from the optimal.

doi:10.1088/1742-5468/2012/05/P05025 5

http://dx.doi.org/10.1088/1742-5468/2012/05/P05025

J.S
tat.M

ech.
(2012)

P
05025

Message passing for quantified Boolean formulas

Figure 2. Running time of the BPSPDU heuristics compared to WalkMinQBF
on 50 random (2, 3) QBF benchmarks with the same number of variables
Ne = Nu = 300 but different αe values (left), and the same αe = 11.0 but
different number of variable n = Ne = Nu (right).

In figure 2 we compare the performance of the BPSPDU and WalkminQBF heuristics
for random (2, 3) instances. The WalkMinQBF aims at setting the universal variables in
order to maximize the number of unsatisfied clauses, and then evaluates the remaining
SAT formula with a complete SAT solver. Note that the complete SAT solver used by
WalkminQBF and BPSPDU is the same, kcnfs [6, 10], so the difference in performance
comes only from the quality of the universal configuration given by the two heuristics.

As the figure shows, formulas with larger number of clauses are easier for
WalkMinQBF, and the running time of the algorithm has larger fluctuations compared
to that of BPSPDU. The difference between the two algorithms is clearer for larger
problem instances; with Ne = Nu = 350, BPSPDU solves 49 out of the 50 instances, and
WalkMinQBF solves only 17 of them within 1000 seconds. The above results indicate that
the universal configuration suggested by BPSPDU is much better than the one suggested
by WalkMinQBF.

BPDU and BPSPDU cannot be applied to more general multi-alternation QBF
directly, but note that a multi-alteration QBF can be transformed to a 2-alternation
QBF by changing the order of universal and existential variables. For example, given
a 4-alternation QBF F = ∀X1∃X2∀X3∃X4Φ, we can arrive at F ′ = ∀X1X3∃X2X4 by
switching the order of X2 and X3. One can prove that if F ′ is unsatisfiable, then F is
unsatisfiable. The heuristic algorithm can be used to prove the unsatisfiability of F ′, and
so that of F . We did not test the idea of generalization of heuristic solver by switching
quantifier order, we leave this to future work.

4. Message passing to guide QBF complete solvers

When the BPDU or the BPSPDU algorithms introduced in section 6 output ‘unknown’,
there might be another configuration of the universal variables that makes the formula
unsatisfiable. Given that we were fixing the universal variables starting with the most
biased one, it might be a good strategy to backtrack on the variables fixed in the later

doi:10.1088/1742-5468/2012/05/P05025 6

http://dx.doi.org/10.1088/1742-5468/2012/05/P05025

J.S
tat.M

ech.
(2012)

P
05025

Message passing for quantified Boolean formulas

stages. In this section we extend this idea into a complete DPLL-style solver, which is
using message passing to decide on which variables to branch next.

DPLL-style algorithms are the most efficient complete solvers for SAT and QBF, they
search the whole configurational space by backtracking. The difference between DPLL for
SAT and for QBF is that in QBF DPLL does backtracking on existential variable when it
encounters a contradiction, and does backtracking on universal variable when it encounters
a solution, see e.g. [18] for details. Besides the basic DPLL backtracking procedure,
there are several components in modern SAT and QBF solvers that lead to exponential
speeding up, among the important ones are decision heuristics, unit-clause propagation,
non-chronological back-jumping, conflict and solution driven clause learning [18, 20]. Our
contribution concerns the decision heuristics which is used in order to decide which
variable will be used in the next branch and which sign of the variable should be checked
first. Decision heuristics guide DPLL to the more relevant branches and keeps it away
from irrelevant branches.

Here we propose a decision heuristics that uses information coming from the result
of belief propagation (that was iterated until convergence or for tmax steps on the whole
formula ignoring the quantifiers). We propose to start branching with the more biased
universal variables and assign them first the less probable values. For the existential
variables we start branching also on the more biased ones, but assign them the more
probable values. The motivation is that this will speed up the search of a universal
configuration that will leave the existential part of the QBF unsatisfiable, and the search
for a solution on the existential part. In particular we propose two decision heuristics.

In the BPH decision heuristics we simply order the variables according to their bias,
starting with the most biased one, and assign them first the value opposite to the bias for
the universal variables and according to the bias for the existential ones.

In the BPDH decision heuristics we run BP and choose the most biased unassigned
variables which belong to the highest quantifier order. If this variable is universal we assign
it the value opposite to its bias, if this variable is existential we assign it according to its
bias. We repeat BP on the simplified formula. Finally the BPDH heuristics will branch
variables in the same order as they were encountered in this procedure. Most of the good
decision heuristics for SAT and QBF solvers are dynamic, which means that the branching
sequence is being updated during the run. Our BPH and BPDH decision heuristics are
computationally heavier than the other efficient decision heuristics e.g. VSIDS, MOMs or
failed-literal-detection [9], so we use it only once at the very beginning of the DPLL run.

We report performance of DPLL with our BPH and BPDH decision heuristics on two
levels. The first level is using BPH and BPDH in the pure DPLL (no features such as
conflict and solution driving back-jumping and clause learning included). The second level
is using BPH in a state-of-art QBF solver QuBE7.2, which is one of the fastest known
solvers today.

In figure 3 we plot the number of solutions and the number of conflicts encountered
in DPLL using a pure DPLL algorithm and those encountered in DPLL with BPDH and
BPH decision heuristics on random (1, 3) QBF formulas. By pure DPLL we mean with no
back-jumping nor clause learning, and the default decision heuristics is VSIDS (variable
state independent decaying sum) [19, 20], which is based on dynamic statistics of literal
count as a score to order literals (in the case of pure DPLL, no learned clause contributes
to the literal count). Since pure DPLL is very CPU-time demanding, we use formulas

doi:10.1088/1742-5468/2012/05/P05025 7

http://dx.doi.org/10.1088/1742-5468/2012/05/P05025

J.S
tat.M

ech.
(2012)

P
05025

Message passing for quantified Boolean formulas

Figure 3. Number of solutions, number of conflicts, running time and ratio of
satisfiable formulas Ps, as resulting from pure DPLL for solving random (1, 3)
formulas, data are averaged over 10 000 instances. Nu = 15 and Ne = 15.

with only Nu = Ne = 15 variables. We also plot the ratio of satisfiable formulas Ps, and
we can see that when almost all formulas are satisfiable, the average number of solutions
encountered in DPLL is always 215, because to prove the satisfiability of a formula, pure
DPLL has to scan all the 2Nu universal configurations. When Ps becomes smaller than
one, DPLL with BPDH and BPH encounters a much smaller number of solutions than the
pure DPLL. Figure 3 shows that in the whole range of parameters the number of conflicts
encountered by DPLL with BPDH and BPH is always much smaller than DPLL with
VSIDS decision heuristics. The fewer solutions and conflicts encountered, the smaller is
the search tree explored by the algorithm.

A better way to extract the full power of BPH and BPDH in a DPLL-based search is
to use solution and conflict driven back-jumping and clause learning. In clause learning,
reasons for solutions and conflicts are analyzed and stored as learned clauses in order to
implement non-chronological back-jumping to more relevant branches of the search tree
and to avoid the encounter of the same solutions or conflicts in the future search. With
clause learning, DPLL does not have to explore 2Nu satisfiable leaves of the search tree,
and good decision heuristics could lead to a smaller number of solutions. We applied
clause learning to the pure DPLL with and without BPH. Results show that with BPH
and BPDH, both search tree size and running time are exponentially smaller than without
BPH for both unsatisfiable and satisfiable formulas.

doi:10.1088/1742-5468/2012/05/P05025 8

http://dx.doi.org/10.1088/1742-5468/2012/05/P05025

J.S
tat.M

ech.
(2012)

P
05025

Message passing for quantified Boolean formulas

Figure 4. Number of conflicts, solutions and time used by DPLL of QuBE7.2
and QuBE7.2 + BPH in solving random (1, 3) formulas, data are averaged over
200 instances. Nu = 50 and Ne = 50.

As a next step we implemented message passing decision heuristics in a state-of-the-
art solver; we chose QuBE7.2, which uses solution and conflict driven clause learning, as
one of the fastest known solver’s today (DepQBF [21] won the last evaluation in 2010,
but the latest QuBE we are using comes after DepQBF, so it is not clear to us which one
is faster), and replaced the decision heuristics in QuBE7.2 by BPH. We have also tried
using BPH in other state-of-the-art solvers and found quantitatively similar results.

Our results are presented in figure 4. The power of QuBE enables us to reach larger
formulas than we used in figure 3, so our experiments are carried out on random (1, 3)
formulas with Ne = Nu = 50. From the figures we can see that BPH considerably reduces
the size of the search tree as well as the computation time exponentially for a whole range
of αe, the improvement in performance is relatively small only close to the transition
region. Figure 5 shows the computational time reduction with the system size. We see
that with the same time limit, BPH enables QuBE to solve larger formulas.

Ideas similar to ours have already been explored in [11], where the authors studied an
algorithm named HSPQBF that uses SP as the decision heuristics in a QBF solver Quaf-
fle [18]. We see that using BP as the decision heuristics is more stable than SP because SP
has a narrow region of working parameter. Recall that in random SAT formulas with the
number of variables going to infinity, BP reports correct marginals with constraint density
ranging from zero to the condensation transition point [23]. However, SP always has a

doi:10.1088/1742-5468/2012/05/P05025 9

http://dx.doi.org/10.1088/1742-5468/2012/05/P05025

J.S
tat.M

ech.
(2012)

P
05025

Message passing for quantified Boolean formulas

Figure 5. Time used by DPLL of QuBE7.2 and QuBE7.2 + BPH in solving
random (1, 3) formulas with fixed αe values and a different number of variables
n (Nu = Ne = n). Data are averaged over 2000 instances. As shown in figure 4,
with αe = 4.0, most formulas are satisfiable and with αe = 5.8, most formulas
are unsatisfiable.

Figure 6. Time used by Quaffle+BPH and by HSPQBF [11] in solving random
(1, 3) formulas, data are averaged over 2000 instances. Nu = 30 and Ne = 30.

trivial solution (zero messages) when the constraint density is smaller than a value that lies
relatively close to the SAT–UNSAT transition point [1, 24]. Moreover, hard QBF instances
are often located in the region where the SAT formula created by ignoring the quantifiers
is easy and SP often has a trivial solution, but BP works well. We cross-checked these
intuitions using BPH to guide Quaffle, and compared the running time of DPLL in solving
random (1, 3) instances by BPH guided Quaffle and HSPQBF in figure 6. The figure indi-
cates that in the whole range of αe, Quaffle with BPH gives better results than HSPQBF.
We also checked other types of random formulas and similar results were obtained.

doi:10.1088/1742-5468/2012/05/P05025 10

http://dx.doi.org/10.1088/1742-5468/2012/05/P05025

J.S
tat.M

ech.
(2012)

P
05025

Message passing for quantified Boolean formulas

Figure 7. Number of conflicts, solutions and time used by DPLL of QuBE7.2
in solving model-B formulas, data are averaged over 200 instances. Formulas
have four alternations and n = 20 variables in each alternation. Each clause in
the formula contains four existential variables that are selected randomly from
all the existential variables (i.e. from the second- and fourth-level variables) and
one universal variable that is selected randomly from all the universal variables
(i.e. from the first and third level variables). αe in figure corresponds to the
number of clauses divided by n. In generating formula, we use a formula generator
downloaded from QBFLIB [22].

Unlike BPDH, BPH works naturally on QBF with multiple alternations. To test
performance of BPH in general QBF, we tested model-B formulas with four alternations,
the results are plotted in figure 7. As the figure shows, for small αe BPH improves the
performance considerably. However, it gives only small performance improvement for
large αe when all formulas are unsatisfiable.

5. Performance of BPH on structured formulas

In contrast with random formulas, BP usually does not give accurate information about
the solution space on structured formulas because of the existence of many short loops.
Hence we do not expect BP to improve complete solvers in solving every structured
formula. We tested some structured benchmarks from QBFLIB [22]; some of the results

doi:10.1088/1742-5468/2012/05/P05025 11

http://dx.doi.org/10.1088/1742-5468/2012/05/P05025

J.S
tat.M

ech.
(2012)

P
05025

Message passing for quantified Boolean formulas

Table 1. Running time (in seconds) of QuBE7.2 and QuBE7.2 + BPH in solving
structured benchmarks.

Name of instance QuBE QuBE + BPH Name of instance QuBE QuBE + BPH

ii8c1-50 >600 14.21 ev-pr-8x8-15-7-0-1-2-lg 0.023 >600
ncf 16 128 2 edau.8 >600 0.27 flipflop-12-c 0.71 >600
ncf 16 64 8 euad.4 >600 4.01 lut4 3 fAND 0.25 >600
x170.5 520.44 63.42 cf 2 9x9 w 0.18 539.49
ncf 8 32 4 euad.4 301.86 0.14 ncf 4 32 4 u.9 35.69 565.35
szymanski-5-s 153.00 19.31 c2 BMC p2 k8 95.49 207.25
k d4 n-5 408.15 83.94 toilet a 10 01.15 7.45 510.84
ncf 4 32 8 edau.3 349.78 0.25 cf 3 9x9 d 0.17 480.27
x170.19 340.05 13.07 connect 9x8 8 D 0.08 115.79
k grz p-13 190.66 24.99 stmt21 252 267 3.93 142.49
connect 5x4 3 R 97.51 38.35 k ph n-20 7.65 462.44
BLOCKS4i.6.4 49.21 29.87 toilet a 10 01.11 0.02 416.16
C880.blif 0.10 1.00
0 1 out exact 93.21 44.45 x115.4 201.46 302.64

CHAIN18v.19 346.39 288.12 stmt21 143 314 92.61 92.75

are listed in table 1. We can see from the table that in some formulas, BPH increases
the performance of QuBE7.2 while in other formulas, BPH decreases the performance.
Remarkably, some instances e.g. ncf 16 64 8 edau.8 problem and ii8c1-50 problem, which
have not been solved by other solvers (in previous QBF evaluations), can be solved by
QubE7.2 + BPH in a few seconds.

6. Conclusion and discussion

In this paper we developed heuristic and complete algorithms for QBF based on message
passing. Our heuristic algorithms BPDU and BPSPDU use message passing to find a
universal assignment that evaluates to an unsatisfiable remaining formula, thus proving
the unsatisfiability of 2-alternation QBF. On random formulas, our heuristic algorithms
outperform WalkminQBF. Our complete algorithm is based on the DPLL process, which
searches the whole configurational space by backtracking more efficiently, using message
passing branching heuristics BPDH and BPH. Our algorithms usually give exponential
efficiency gain on random QBF and in some cases they provide large improvement also
on structured QBF and solve some previously unsolved benchmarks in QBFLIB. The
algorithms described above can be downloaded from [25].

In our understanding, the power of BPH comes from the inference of solution-space
structure of the underlying system by message passing. If the information is accurate, as
shown in random problems [1, 23, 24], with it one is able to drive the search process to
a certain target, e.g. to find a solution of a SAT formula [1] or to reduce the size of the
search tree in solving QBF as studied in this paper. Our results should encourage further
investigation of the use of message passing as heuristic solvers or as guides for heuristics
included in DPLL-like complete solvers.

doi:10.1088/1742-5468/2012/05/P05025 12

http://dx.doi.org/10.1088/1742-5468/2012/05/P05025

J.S
tat.M

ech.
(2012)

P
05025

Message passing for quantified Boolean formulas

Acknowledgments

RZ and PZ would like to thank Massimo Narizzano for discussing and sharing the source
code of QuBE7.2. PZ would like to thank Minghao Yin and Junping Zhou for discussing
and sharing the source code of HSPQBF.

References

[1] Mézard M, Parisi G and Zecchina R, Analytic and algorithmic solution of random satisfiability problems,
2002 Science 297 812

[2] Weigt M, White R A, Szurmant H, Hoch J A and Hwa T, Identification of direct residue contacts in
protein-protein interaction by message passing, 2009 Proc. Nat. Acad. Sci. 106 67

[3] Richardson T J and Urbanke R L, The capacity of low-density parity-check codes under message-passing
decoding , 2000 IEEE Trans. Inf. Theory 47 599

[4] Donoho D L, Maliki A and Montanari A, Message-passing algorithms for compressed sensing, 2009 Proc.
Nat. Acad. Sci. 106 18914

[5] Hsu E I, Muise C J, Beck J C and McIlraith S A, From backbone to bias: probabilistic inference and
heuristic search performance, 2008 www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf

[6] Dequen G and Dubois O, An efficient approach to solving random k-sat problems, 2006 J. Autom.
Reasoning 37 261

[7] Heule M J H and van Maaren H, March dl: Adding adaptive heuristics and a new branching strategy, 2006
J. Satisfiability, Boolean Modeling Comput. 2 47

[8] Giunchiglia E, Narizzano M and Tacchella A, QuBE: A system for deciding quantified boolean formulas
satisfiability , 2001 Proc. Int. Joint Conf. on Automated Reasoning (IJCAR’2001) p 364

[9] Li C M and Anbulagan, Heuristics based on unit propagation for satisfiability problems, 1997 Proc. 15th
Int. Joint Conf. on Artifical Intelligence (IJCAI’97) p 366

[10] Dubois O and Dequen G, A backbone-search heuristic for efficient solving of hard 3-SAT formulae, 2001
Proc. Int. Joint Conf. on Artificial Intelligence (IJCAI’01) p 248

[11] Yin M, Zhou J, Sun J and Gu W, Heuristic survey propagation algorithm for solving QBF Problem, 2011
J. Softw. 22 1538

[12] Biere A, Heule M, van Maaren H and Walsh T, 2009 Handbook of Satisfiability (Amsterdam: IOS Press)
[13] Interian Y, Corvera G, Selman B and Williams R, Finding small unsatisfiable cores to prove unsatisfiability

of qbfs, 2006 9th Int. Symp. on AI and Mathematics (Fort Lauderdale, Florida)
www.cs.cornell.edu/gec27/report/wmq.asp

[14] Gent I and Walsh T, Beyond NP: the QSAT phase transition, 1999 Proc. 16th National Conf. Artificial
Intelligence (AAAI/IAAI) p 648

[15] Chen H and Interian Y, A model for generating random quantified boolean formulas, 2005 Proc. 19th Int.
Joint Conf. on Artificial Intelligence (IJCAI’05) p 66

[16] Yedidia J S, Freeman W T and Weiss Y, Understanding belief propagation and its generalizations, 2003
Exploring Artificial Intelligence in the New Millennium ed G Lakemeyer and B Nebel (San Francisco:
Morgan Kaufmann) ch 8, p 239

[17] Braunstein A, Mézard M and Zecchina R, Survey propagation: an algorithm for satisfiability , 2005 Random
Struct. Alg. 27 201

[18] Zhang L and Malik S, Towards a symmetric treatment of satisfaction and conflicts in quantified Boolean
formula evaluation, 2002 Proc. 8th Int. Conf. on Principles and Practice of Constraint Programming
(CP’2002) p 200

[19] Moskewicz M, Madigan C, Zhao Y, Zhang L and Malik S, Chaff: engineering an efficient SAT solver , 2001
Proc. 39th Design Automation Conf. (DAC’01) p 530

[20] Zhang L, Madigan C F, Moskewicz M H and Malik S, Efficient conflict driven learning in a Boolean
satisfiability solver , 2001 Proc. Int. Conf. on Computer-Aided Design (ICCAD’01) p 279

[21] Lonsing F and Biere A, DepQBF: a dependency-aware QBF Solver , 2010 J. Satisfiability Boolean Modeling
Comput. 7 71

[22] Giunchiglia E, Narizzano M and Tacchella A, 2001 QBFLIB: Quantified Boolean Formulas Satisfiability
Library www.qbflib.org

[23] Krzakala F, Montanari A, Ricci-Tersenghi F, Semerjian G and Zdeborová L, Gibbs states and the set of
solutions of random constraint satisfaction problems, 2007 Proc. Nat. Acad. Sci. 104 10318

[24] Mertens S, Mézard M and Zecchina R, Threshold values of random K-SAT from the cavity method , 2006
Random Struct. Alg. 28 340

[25] http://panzhang.net/qbf

doi:10.1088/1742-5468/2012/05/P05025 13

http://dx.doi.org/10.1126/science.1073287
http://dx.doi.org/10.1073/pnas.0805923106
http://dx.doi.org/10.1109/18.910577
http://dx.doi.org/10.1073/pnas.0909892106
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://www.cs.mu.oz.au/cp2008/post-proceedings/106long.pdf
http://dx.doi.org/10.1007/s10817-006-9025-2
http://dx.doi.org/10.3724/SP.J.1001.2011.03859
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://www.cs.cornell.edu/~gec27/report/wmq.asp
http://dx.doi.org/10.1002/rsa.20057
http://www.qbflib.org
http://www.qbflib.org
http://www.qbflib.org
http://www.qbflib.org
http://www.qbflib.org
http://www.qbflib.org
http://www.qbflib.org
http://www.qbflib.org
http://www.qbflib.org
http://www.qbflib.org
http://www.qbflib.org
http://www.qbflib.org
http://www.qbflib.org
http://www.qbflib.org
http://dx.doi.org/10.1073/pnas.0703685104
http://dx.doi.org/10.1002/rsa.20090
http://panzhang.net/qbf
http://panzhang.net/qbf
http://panzhang.net/qbf
http://panzhang.net/qbf
http://panzhang.net/qbf
http://panzhang.net/qbf
http://panzhang.net/qbf
http://panzhang.net/qbf
http://panzhang.net/qbf
http://panzhang.net/qbf
http://panzhang.net/qbf
http://panzhang.net/qbf
http://panzhang.net/qbf
http://panzhang.net/qbf
http://panzhang.net/qbf
http://panzhang.net/qbf
http://panzhang.net/qbf
http://panzhang.net/qbf
http://panzhang.net/qbf
http://panzhang.net/qbf
http://panzhang.net/qbf
http://panzhang.net/qbf
http://panzhang.net/qbf
http://dx.doi.org/10.1088/1742-5468/2012/05/P05025

	1. Introduction
	2. Definitions and formulas
	3. Heuristic algorithm for proving unsatisfiability
	4. Message passing to guide QBF complete solvers
	5. Performance of BPH on structured formulas
	6. Conclusion and discussion
	Acknowledgments
	References

